
Appendix A. Simple Simulation Design R Code 
 
# Generalizing Observational Study Results: Applying Propensity Score Methods to Complex Surveys 
# Supplemental code  
# Code (1) Simulates data with survey structure  
#          (2) Estimates treatment effect via several different methods (naive estimate, with survey weights only, 
#          with propensity score methods only, or combining propensity scores and survey weights) 
 
# Required R packages 
#install.packages("survey") 
#install.packages("MatchIt") 
library("survey") 
library("MatchIt") 
 
 
######################################################## 
## Generate data 
######################################################## 
 
# Define number of simulations 
nsims <- 1000 
# Define total population size 
N <- 90000 
# Stratum indicator (3 equal sized stratum) 
stratum <- c(rep(1,30000), rep(2, 30000), rep(3,30000)) 
 
# Simulate covariate X as random normal variable 
# Mean of X varies by stratum 
X <- c(rnorm(N/3, mean=-.25), rnorm(N/3, mean=0), rnorm(N/3, mean=.25)) 
 
# Selection model (based on one in Cole & Stuart, 2010) 
# Mean P(selection) = 0.1 
beta0 <- -3.8 
beta1 <- -log(4) 
# Define sampling probabilities for each individual 
# Sampling probability varies by X 
prob.sel <- exp(1+beta0+beta1*X)/(1 + exp(1+beta0+beta1*X)) 
# Define sampling weights as inverse probability of selection 
S.WT <- 1/prob.sel 
 
# Treatment model (has to be done in population to define PATT) 
tau0 <- -2 
tau1 <- log(4) 
# Define probability of treatment for each individual 
# Treatment probability varies by X 
prob.t <- exp(1+tau0+tau1*X)/(1+exp(1+tau0+tau1*X)) 
# Binary treatment variable (T) generated by random binomial draws with treatment probability 
T <- rbinom(N, 1, prob.t) 
 
# Generate potential outcomes 
# Y0 = Potential outcome under control condition (T = 0) 
# Y1 = Potential outcome under treatment condition (T=1) 
# Potential outcomes vary by X 
alpha0 <- 1 
alpha1 <- 1 
Y0 <- alpha0 + alpha1*X + rnorm(N, mean=0, sd=.5) 



gamma1 <- .2 
gamma2 <- .1 
Y1 <- Y0 + gamma1 + gamma2*X + rnorm(N, mean=0, sd=.5) 
# Define observed outcome Y 
Y <- ifelse(T==1, Y1, Y0) 
 
# Final simulated data 
data <- as.data.frame(cbind(x=X,stratum=stratum,y0=Y0, y1=Y1, t=T, y=Y, s.wt=S.WT)) 
 
 
######################################################## 
## Estimate Treatment Effects 
######################################################## 
 
# Estimate true average effect 
# Note: SD of Y is about 1.1 so these are essentially effect sizes 
# Average Treatment Effect 
ate <- mean(Y1)-mean(Y0) 
# Average Treatment Effect on the Treated 
att <- mean(Y1[T==1])-mean(Y0[T==1]) 
 
# Define empty matrices for estimated tx effects 
effects <- coverage.ate <- coverage.att <- matrix(NA, ncol=12, nrow=nsims) 
# Column names, indicating various analyses 
colnames(effects) <- colnames(coverage.ate) <- colnames(coverage.att) <-  
  c("Naive", "Surv", "ATEWt","ATTWt", "ATESub",  "ATTSub","NN", "ATEWtSurv", 
"ATTWtSurv","ATESubSurv", 
    "ATTSubSurv", "NNSurv") 
 
# Iterate drawing samples and estimating treatment effects 
for (i in 1:nsims) { 
  # dta1 represents total population in Stratum 1  
  dta1 <- data[1:30000,] 
  # S1 is sample from Stratum 1 (sampled with stratum-specific probabilities) 
  S1 <- dta1[sample(1:nrow(dta1), 4000, replace=FALSE, prob=prob.sel[1:30000]),]  
  # Define sampling weights for S1 
  S1$s.wt <- S1$s.wt * (30000/4000) 
  # dta2 represents total population in Stratum 2  
  dta2 <- data[30001:60000,] 
  # S2 is sample from Stratum 2 (sampled with stratum-specific probabilities) 
  S2 <- dta2[sample(1:nrow(dta2), 3000, replace=FALSE, prob=prob.sel[30001:60000]),]  
  # Define sampling weights for S2 
  S2$s.wt <- S2$s.wt * (30000/3000) 
  # dta3 represents total population in Stratum 3  
  dta3 <- data[60001:90000,] 
  # S3 is sample from Stratum 3 (sampled with stratum-specific probabilities) 
  S3 <- dta3[sample(1:nrow(dta3), 2000, replace=FALSE, prob=prob.sel[60001:90000]),]  
  # Define sampling weights for S3 
  S3$s.wt <- S3$s.wt * (30000/2000) 
  # Final sample 
  samp <- rbind(S1, S2, S3) 
  Ns <- 9000 
 
#################     
  # First naive estimate  
  temp <- lm(y ~ t + x, data=samp) 



  effects[i,"Naive"] <- summary(temp)$coef[2,1]  
  sd <- summary(temp)$coef[2,2] 
  # Calculate 95% CI coverage rates for ATE estimate 
  coverage.ate[i,"Naive"] <- ifelse(effects[i,"Naive"]-2*sd < ate & effects[i,"Naive"] +2*sd > ate, 1, 0) 
  # Calculate 95% CI coverage rates for ATT estimate 
  coverage.att[i,"Naive"] <- ifelse(effects[i,"Naive"]-2*sd < att & effects[i,"Naive"] +2*sd > att, 1, 0) 
 
#################   
  # Survey weighted estimate  
  # Set up survey design with stratum and sampling weights 
  svy.design <- svydesign(ids=~1, strata=samp$stratum, weights=samp$s.wt, data=samp) 
  lm.svy <- svyglm(y ~ t+x, design=svy.design) 
  effects[i,"Surv"] <- summary(lm.svy)$coef[2,1] 
  sd <- summary(lm.svy)$coef[2,2] 
  coverage.ate[i,"Surv"] <- ifelse(effects[i,"Surv"]-2*sd < ate & effects[i,"Surv"] +2*sd > ate, 1, 0) 
  coverage.att[i,"Surv"] <- ifelse(effects[i,"Surv"]-2*sd < att & effects[i,"Surv"] +2*sd > att, 1, 0) 
#################     
  # Propensity score weighted estimate  
  # Estimate propensity scores to use in propensity score weighted analyses 
  t.model <- glm(t ~ x, data=samp, family="binomial") 
  pscore <- predict(t.model, data=samp, type="response") 
  # Define ATE propensity score weights (IPTW) 
  samp$ate.wt <- ifelse(samp$t==1, 1/pscore, 1/(1-pscore)) 
  # Define ATT propensity score weights (weighting by the odds) 
  samp$att.wt <- ifelse(samp$t==1, 1, pscore/(1-pscore))    
  # ATE version 
  # Set up survey design with strata and propensity score weights 
  tate.design <- svydesign(ids=~1, strata=samp$stratum, weights=samp$ate.wt, data=samp) 
  lm.t <- svyglm(y ~ t+x, design=tate.design) 
  effects[i,"ATEWt"] <- summary(lm.t)$coef[2,1] 
  sd <- summary(lm.t)$coef[2,2] 
  coverage.ate[i,"ATEWt"] <- ifelse(effects[i,"ATEWt"]-2*sd < ate & effects[i,"ATEWt"] +2*sd > ate, 1, 0)   
  # ATT version 
  # Set up survey design with strata and propensity score weights 
  tatt.design <- svydesign(ids=~1, strata=samp$stratum, weights=samp$att.wt, data=samp) 
  lm.t <- svyglm(y ~ t+x, design=tatt.design) 
  effects[i,"ATTWt"] <- summary(lm.t)$coef[2,1] 
  sd <- summary(lm.t)$coef[2,2] 
  coverage.att[i,"ATTWt"] <- ifelse(effects[i,"ATTWt"]-2*sd < att & effects[i,"ATTWt"] +2*sd > att, 1, 0) 
 
#################   
  # Propensity score weights + survey weights analysis 
  # ATE version 
  # Define combined weights (product of propensity score and survey sampling weights) 
  samp$comb.ate <- samp$ate.wt*samp$s.wt 
  # Set up survey design with strata and combined weights 
  comb.ate.design <- svydesign(ids=~1, strata=samp$stratum, weights=samp$comb.ate, data=samp) 
  lm.comb <- svyglm(y ~ t+x, design=comb.ate.design) 
  effects[i,"ATEWtSurv"] <- summary(lm.comb)$coef[2,1] 
  sd <- summary(lm.comb)$coef[2,2] 
  coverage.ate[i,"ATEWtSurv"] <- ifelse(effects[i,"ATEWtSurv"]-2*sd < ate & effects[i,"ATEWtSurv"] +2*sd > ate, 
1, 0)   
  # ATT version 
  # Define combined weights (product of propensity score and survey sampling weights) 
  samp$comb.att <- samp$att.wt*samp$s.wt 
  comb.att.design <- svydesign(ids=~1, strata=samp$stratum, weights=samp$comb.att, data=samp) 



  lm.comb <- svyglm(y ~ t+x, design=comb.att.design) 
  effects[i,"ATTWtSurv"] <- summary(lm.comb)$coef[2,1] 
  sd <- summary(lm.comb)$coef[2,2] 
  coverage.att[i,"ATTWtSurv"] <- ifelse(effects[i,"ATTWtSurv"]-2*sd < att & effects[i,"ATTWtSurv"] +2*sd > att, 
1, 0) 
 
#################   
  # Nearest neighbor matching approach, without survey design 
  # Use MatchIt to estimate propensity scores and create matched sample (1:1 nearest neighbor approach) 
  m.out <- matchit(t ~ x, data=samp) 
  # Subset to matched sample  
  m.data <- match.data(m.out) 
  # Estimate ATT effects on matched data 
  lm.match <- lm(y ~ t+x, data=m.data) 
  effects[i,"NN"] <- summary(lm.match)$coef[2,1] 
  sd <- summary(lm.match)$coef[2,2] 
  coverage.att[i,"NN"] <- ifelse(effects[i,"NN"]-2*sd < att & effects[i,"NN"] +2*sd > att, 1, 0) 
 
#################     
  # Nearest neighbor matching approach, with survey design 
  # Set up survey design with stratum and sampling weights 
  match.design <- svydesign(ids=~1, strata=m.data$stratum, weights=m.data$s.wt, data=m.data) 
  # Estimate ATT effects on matched data 
  lm.matchwt <- svyglm(y ~ t+x, design=match.design) 
  effects[i,"NNSurv"] <- summary(lm.matchwt)$coef[2,1] 
  sd <- summary(lm.matchwt)$coef[2,2] 
  coverage.att[i,"NNSurv"] <- ifelse(effects[i,"NNSurv"]-2*sd < att & effects[i,"NNSurv"] +2*sd > att, 1, 0)  
 
#################       
  # Subclassification (both with and without survey design) 
  # Use MatchIt to estimate propensity scores and create matched sample (subclassification approach) 
  m.out.subclass <- matchit(t ~ x, data=samp, method="subclass")  
  # Subset to matched sample  
  data.subcl <- match.data(m.out.subclass) 
   
  # Define empty vectors for effect estimates and variances 
  # For unweighted estimates 
  effects.sub <-   vars <- rep(NA, max(data.subcl$subclass)) 
  # For survey weighted estimates 
  effects.sub.wt <- vars.wt <- rep(NA, max(data.subcl$subclass)) 
  # Empty vectors for subclass specific sample sizes 
  N.t.s <- N.s  <- SumWts.s <- SumWts.t.s <- rep(NA, max(data.subcl$subclass)) 
  SumWts <- sum(samp$s.wt) 
  SumWts.t <- sum(samp$s.wt[samp$t==1]) 
  Nt <- sum(samp$t) 
   
  # Run regression model within each subclass 
  # All subclassification effect estimates are generated from the same subclass-specific effect estimates  
  for(s in 1:max(data.subcl$subclass)) 
  { 
    # Subclass specific estimates, no survey design 
    tmp <- lm(y ~ t + x, data=data.subcl, subset=subclass==s) 
    effects.sub[s] <- tmp$coef[2] 
    vars[s] <- summary(tmp)$coef[2,2]^2 
    # Subclass specific estimates, accounting for survey design 
    sub.design <- svydesign(ids=~1,  



                            strata=data.subcl$stratum[data.subcl$subclass==s], 
                            weights=data.subcl$s.wt[data.subcl$subclass==s], data=data.subcl[data.subcl$subclass==s,]) 
    lm.sub <- svyglm(y ~ t+x, design=sub.design) 
    effects.sub.wt[s] <- summary(lm.sub)$coef[2,1] 
    vars.wt[s] <- summary(lm.sub)$coef[2,2]^2 
    # For ATE estimates 
    # Number of individuals in each subclass 
    N.s[s] <- sum(data.subcl$subclass==s) 
    # Sum of sampling weights in each subclass 
    SumWts.s[s] <- sum(data.subcl$s.wt[data.subcl$subclass==s]) 
    # For ATT estimates 
    # Number of treated individuals in each subclass 
    N.t.s[s] <- sum(data.subcl$subclass==s & data.subcl$t==1) 
    # Sum of sampling weights for treated individuals in each subclass 
    SumWts.t.s[s] <- sum(data.subcl$s.wt[data.subcl$subclass==s & data.subcl$t==1]) 
  } 
   
  # ATE, no survey weights: weight subclasses by total # in subclass 
  effects[i, "ATESub"] <- sum((N.s/Ns)*effects.sub) 
  sd <- sqrt(sum((N.s/N)^2*vars)) 
  coverage.ate[i,"ATESub"] <- ifelse(effects[i,"ATESub"]-2*sd < ate & effects[i,"ATESub"] +2*sd > ate, 1, 0)  
  # ATT, no survey weights: weight subclasses by # treated in subclass 
  effects[i, "ATTSub"] <- sum((N.t.s/Nt)*effects.sub) 
  sd <- sqrt(sum((N.t.s/Nt)^2*vars)) 
  coverage.att[i,"ATTSub"] <- ifelse(effects[i,"ATTSub"]-2*sd < att & effects[i,"ATTSub"] +2*sd > att, 1, 0)  
  # ATE, with survey weights: weight subclasses by sum of weights in subclass 
  effects[i, "ATESubSurv"] <- sum((SumWts.s/SumWts)*effects.sub.wt) 
  sd <- sqrt(sum((SumWts.s/SumWts)^2*vars.wt)) 
  coverage.ate[i,"ATESubSurv"] <- ifelse(effects[i,"ATESubSurv"]-2*sd < ate & effects[i,"ATESubSurv"] +2*sd > 
ate, 1, 0) 
  # ATT, with survey weights: weight subclasses by sum of weights of treated in subclass 
  effects[i, "ATTSubSurv"] <- sum((SumWts.t.s/SumWts.t)*effects.sub.wt) 
  sd <- sqrt(sum((SumWts.t.s/SumWts.t)^2*vars.wt)) 
  coverage.att[i,"ATTSubSurv"] <- ifelse(effects[i,"ATTSubSurv"]-2*sd < att & effects[i,"ATTSubSurv"] +2*sd > 
att, 1, 0)  
} 
 
################### 
# Calculate bias of ATE estimates 
bias.ate <- effects - ate 
print("ATE bias") 
print(round(apply(bias.ate, 2, mean),3)) 
# Calculate mean squared error of ATE estimates 
mse.ate <- (effects - ate)^2 
print("ATE MSE") 
print(round(apply(mse.ate, 2, mean),4)) 
# 95% CI coverage for ATE estimates 
print("ATE Coverage") 
print(round(apply(coverage.ate, 2, mean),2)) 
# Calculate bias of ATT estimates 
bias.att <- effects - att 
print("ATT bias") 
print(round(apply(bias.att, 2, mean),3)) 
# Calculate mean squared error of ATT estimates 
mse.att <- (effects - att)^2 
print("ATT MSE") 



print(round(apply(mse.att, 2, mean),4)) 
# 95% CI coverage for ATT estimates 
print("ATT Coverage") 
print(round(apply(coverage.att, 2, mean),2)) 
 
# Diagnostic plots for ATE estimates (across all methods) 
barplot(abs(apply(bias.ate[,c("Naive", "Surv", "ATEWt", "ATESub", "ATEWtSurv", "ATESubSurv")], 2, mean)), 
cex.names=.3, main="ATE Bias") 
barplot(apply(mse.ate[,c("Naive", "Surv", "ATEWt", "ATESub", "ATEWtSurv", "ATESubSurv")], 2, mean), 
cex.names=.3, main="ATE MSE") 
barplot(apply(coverage.ate[,c("Naive", "Surv", "ATEWt", "ATESub", "ATEWtSurv", "ATESubSurv")], 2, mean), 
cex.names=.3, main="ATE Coverage") 
abline(h=.95) 
# Diagnostic plots for ATT estimates (across all methods) 
barplot(abs(apply(bias.att[,c("Naive", "Surv", "ATTWt", "ATTSub", "NN", "ATTWtSurv", "ATTSubSurv", 
"NNSurv")], 2, mean)), cex.names=.3, main="ATT Bias") 
barplot(apply(mse.att[,c("Naive", "Surv", "ATTWt", "ATTSub", "NN", "ATTWtSurv", "ATTSubSurv", 
"NNSurv")], 2, mean), cex.names=.3, main="ATT MSE") 
barplot(apply(coverage.att[,c("Naive", "Surv", "ATTWt", "ATTSub", "NN", "ATTWtSurv", "ATTSubSurv", 
"NNSurv")], 2, mean), cex.names=.3, main="ATT Coverage") 
abline(h=.95) 
dev.off() 
# Results tables 
write.table(effects, row.names=FALSE, col.names=TRUE, sep=",") 
write.table(coverage.ate, row.names=FALSE, col.names=TRUE, sep=",") 
write.table(coverage.att, row.names=FALSE, col.names=TRUE, sep=",") 



Appendix B. Analysis Models By Estimation Method and Stata Comamnds 
 

Target Population Estimand Survey Command Subclassification Post-
Estimation 

Stata Command 

Survey subjects who 
choose a non-primary care 

physician as their usual 
source of care 

Sample ATT 
(SATT) 

Weighting: svyset PSU 
[pweight = ATT_weight] 
STRATA 
 
Others: svyset PSU 
[pweight =_n] STRATA 

Average across 
subclasses using the 
number of treated in 
the sample in each 
subclass 

svy, subpop(subset): glm 
Y X1 X2 … XK, 
family(gamma) link(log) 
 

Adults in the US who 
choose a non-primary care 

physician as their usual 
source of care 

Population 
ATT 

(PATT) 

Weighting: svyset PSU 
[weight = 
(ATT_IPTW*SAQWT08F)] 
STRATA 
 
Others: svyset PSU [weight 
= SAQWT08F] STRATA 

Average across 
subclasses using the 
number of treated 
people in the 
population in each 
subclass (i.e., the sum 
of the weights of the 
treated subjects in 
each subclass) 

svy, subpop(subset): glm 
Y X1 X2 … XK, 
family(gamma) link(log) 

Survey subjects who 
report having a usual 

source of care 

Sample ATE 
(SATE) 

Weighting: svyset PSU 
[pweight = ATE_weight] 
STRATA 
 
Others: svyset PSU 
[pweight =_n] STRATA 

Average across 
subclasses using the 
number of survey 
subjects in each 
subclass 

glm Y X1 X2 … XK 
[pweight = ate_weight], 
family(gamma) link(log) 

Adults in the US who 
have a usual source of 

care 

Population 
ATE 

(PATE) 

Weighting: svyset PSU 
[pweight = 
(ATE_IPTW*SAQWT08F)] 
STRATA 
 
Subclass: svyset PSU 
[pweight =_ SAQWT08F] 
STRATA 

Average across 
subclasses using the 
total number in the 
population in each 
subclass (i.e., the sum 
of the weights in each 
subclass) 

svy, subpop(subset): glm 
Y X1 X2 … XK, 
family(gamma) link(log) 



 
Appendix C. Supplementary Methods and Discussion on Example 2: The Association 
Between Usual Source of Care and Health Care Expenditures 
 
 It is generally thought that generalist physicians are more effective at managing health 

care costs than specialist physicians. A study by Phillips and colleagues (2009) using four years 

of the Medical Expenditure Panel Survey (MEPS) found that individuals who have a family 

practice or general practitioner as their usual source of care have lower health care costs than 

individuals who have an internist, specialist, or other usual source of care. However, since a 

person’s usual source of care is not randomly assigned, this comparison may be subject to 

selection bias unless confounding is carefully addressed. Individuals with a primary care 

physician as their usual source of care may be substantially different from those seeing a 

specialist on important confounders, such as health status and willingness to use health care 

services.  

Study Data and Methods 

 This example used the 2008 Medical Expenditure Panel Survey (MEPS) Household 

Component, a survey of individuals and families’ health and health care services.  The 

Household Component survey is administered to a nationally representative subsample from the 

National Health Interview Survey (NHIS). The MEPS public-use file contains data on a wide 

range of items including individual demographics, health conditions, health status, medical 

service use, health insurance coverage, and employment status. 

The MEPS reflects the NIHS sampling design, but also includes unique features. The 

NHIS uses a multistage area-level probability sampling strategy with stratification, clustering, 

and oversampling of blacks, Hispanics, and Asians (Machlin et al. 2010). The MEPS also 

oversamples households based on income (Chowdhury 2011; Machlin et al. 2010). The MEPS 



includes several person-level and household-level cross-sectional and longitudinal survey 

weights. We use SAQWT08F, a person level weight for those responding to the supplemental 

self-administered questionnaire. When weighted, the MEPS Household Component sample 

represents the US civilian non-institutionalized population.  

 We modeled this analysis after one aspect of Phillips et al. (2009), which compared 

annual medical spending for adults who had identified a generalist or a specialist physician as his 

or her usual source of health care.  An individual’s usual source of care was determined from a 

series of access to care survey questions that are collapsed into a variable indicating 24 types of 

providers. We classified the control group as those individuals who identified a general practice 

or family physician; specialists included subspecialties including cardiology, endocrinology, 

gastroenterologist, nephrologist, surgeons, and “MD – other.” 

 As is common with expenditure data, our outcome of interest, total health care 

expenditures in 2008, exhibited a right skewed distribution with no negative measures and a 

nontrivial number of zeros. The traditional approach is to log transform the dependent variable, 

which sometimes generates a normal distribution. However, this approach is subject to a re-

transformation bias (Manning 1998; Manning and Mullahy 2001).  The box cox and GLM 

family test indicated that a gamma distribution with log link fit best in our data. Thus, a 

generalized linear model with a gamma distribution and log link was used for all outcome 

analyses and the recycled predications method was used to re-transform estimates back from the 

log scale (Doshi and Glick 2010). 

As in Phillips et al. (2009), covariates included sex, race/ethnicity, marital status, poverty, 

health insurance status, a binary indicator for age over 65, education, self-reported health, 

urban/rural indicator, geographical region, and the physical and mental health components of the 



Short Form health survey (SF-12). Unlike Phillips et al., we did not include the EuroQol health 

status questionnaire items (EQ-5D) because this item was not reported in the 2008 MEPS. We 

also did not include emergency department visits or hospital discharges because we considered 

these variables to be highly collinear with the outcome of interest.  The propensity score model 

included these covariates as well as the survey weight for the self-administered questionnaire.  

 Standard propensity score methods require complete data on all individuals.  Four survey 

items had missing values: education (0.70%), the SF-12 physical component score (0.79%), the 

SF-12 mental component score (0.77%), and self-reported health status (0.85%). In bivariate 

analyses, indicators for these missing items were not statistically significantly associated with the 

outcome, total health care expenditures. We performed single imputation of these variables in 

Stata 12 using the mi ice command based upon all covariates included in the propensity score 

model.  

 To judge the success of each propensity score procedure in terms of creating groups that 

look similar on the observed covariates (“balance”), we use the standardized bias for each 

covariate: the difference in the means between the treated and control groups divided by the 

standard deviation in the treatment group (Ho et al. 2011). Generally, standardized difference in 

means less than 0.25 or 0.20 indicate that the groups are well balanced.  Additionally, we 

assessed propensity score overlap between the treated and control groups. 

 Propensity scores were calculated in R (version 2.14.2) using the MatchIt package (Ho et 

al., 2011) and exported to Stata for analysis. Weighted outcome models, accounting for the 

MEPS complex survey design, were conducted in Stata version 12 using the svyset command 

(StataCorp, 2011). 

 
Discussion 



 
 The findings from the regression analysis (see Table 2) suggest that the estimated effects 

for the SATT and PATT and SATE and PATE are similar. This suggests that in this example, the 

survey sample is similar to that for the target population. The average treatment effect—having a 

specialist physician as a usual source of care—is associated with higher spending compared to 

those with a primary care physician.  

We find that the average effect of having a specialist as one’s usual source of care was 

associated with nearly a $2,500 increase in health care spending for US adults. These estimates 

are somewhat higher than Phillips et al.’s (2009) estimated effect of $2,642 in an unadjusted 

model and $1,430 in a fully adjusted model. These larger estimates may be a result of changes 

over time as well as the difference in study design. 

 While these models suggest that there is a cost effect associated with physician specialty, 

these results have several limitations. While these models sought to address confounding on 

observed health status, these models could not balance the two groups on unobserved differences 

in health and preferences for medical care. Similarly, the geographic adjustment is limited in the 

MEPS public use file to an urban rural indicator and regional variable, and information captured 

by the MEPS survey weight. Lastly, the sample size of the treatment group is small, which may 

unduly bias our results. 
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